

KR-1338/1668 SERVICE MANUAL

10.4" TFT COLOR MARINE RADAR

TABLE OF CONTENTS

1.GENRAL	1
1.1 Outline	
1.2 Boards & Major Components	2
1.3 Specifications	3
2.BLOCK DESCRIPTION	6
2.1 Overview······	6
2.2 Display Unit······	7
Block Diagram of Power Supply	9
Block Diagram of Processor PCB Main 0910	10
2.3 Transceiver Unit	······14
Block Diagram of IF 0711 ·····	15
Block Diagram of Modulator	17
2.4 Different Points of Similar PCBs	
3. ADJUSTMENT	-
3.1 Adjustment of Display Unit	
Location of Parts on MAIN 0910	
VIDEO Signal adjustment	
Location of parts on PWR-0913	
3.2 Adjustment of Scanner Unit	
Location of parts on MOD-0904·····	
Location of Parts on IF-0711	
Location of PCBs in Transceiver Module (KR-1668)	
BEARING SIG GEN Board (HBP0904) ······	
Location of Parts on MOD 0904B······	
Location of Parts on IF-0711	
4. MAINTENANCE	35
4.1 Remarks on Replacement of Major Parts	35
4.2 Life Expectancy of Expendable Parts	
4.3 Menu tree·····	

5.TROUBLESHOOTING	
5.1 Outline ······	
5.2 Troubleshooting Flow Charts	
5.3 Message Indication	

Display Unit Exploded view······	·52
Scanner Unit Exploded View······	·54
Schematic circuit diagram······	·58

1. GENERAL

1.1 Outline

This manual provides the information necessary for the servicing and adjustment of the radars MODEL 1338, 1668.

The antenna unit uses a Log IF amplifier.

The table below shows the major specifications of the each model. The same program is installed on all models, but the menu setting through factory menu is different between the models.

Functions	KR-1338	KR-1668				
Maximum range	36 NM	64 NM				
Program Number	1002XX-XX					
Tuning Voltage (displayed at manual tuning)	4.9 V to 32V					
Antenna Rotation	about 24 rpm					
Antenna Rotation	4 kW 4/6 kW					

KR-1338-SME-1

The major parts and P.C. Boards used in the display and scanner units are tabulated on the next page.

1.2 Boards & Major Components

	Board	KR-1338	KR-1668			
	PROCESSOR Board	MAIN 0910				
DISPLAY	POWER SUPPLY Board	PWR 0	913			
UNIT	FILTER Board	FIL 09	12			
	PANELBoard	KEY 0	912			
	MODULATOR Board	MOD 0904A	MOD 0904B			
	IF AMPBoard	IF	0711			
	RTB Board	_	CON 0906			
	BEARING SIG GEN Board	_	HBP 0905			
SCANNER UNIT	MIC Board	_	RCN 0907			
	MIC	NJT-19	968B			
	Magnetron	MAF1421B/MSF1421B	MAF1421/MAF1422B			
	Circulator	FCX73C				
	Scanner Motor	BM-9256	BM-8256			
Cable	Signal Cable	KRC-003-10(10m) KRC-003-15(15m) KRC-003-20(20m) KRC-003-30(30m)				

1.3 Specifications SCANNER UNIT

		KR- 1338	KR-1668	
Radiator Type		Slotted Wave	guide Array	
Radiator Lengt	h	56cm	120 cm	
Horizontal Bea	umwidth	4°	1.9°	
Vertical Beamy	width	20°	22°	
Sidelobe	Within $\pm 20^{\circ}$ of mainlobe	-18 dB or less	-24 dB or less	
Attenuation	Outside $\pm 20^{\circ}$ of mainlobe	-23 dB or less	-30 dB or less	
Polarization		Horiz	ontal	
Antenna Rotati	ion	24 rpm	nominal	
Scanner Housin	ng Stureruct	Radome Open nominal		
Compass Safe	Standard	0.9 m	1.0 m	
Distance	Steering	0.7 m	0.74 m	

KR-1338-SME-3

TRANCEIVER

	KR-1338	KR-1668			
Magnetron	MAF1421B/MSF1421 MAF1421/MAF1422				
Frequency & Modulation	9410 MHz \pm 30MHz,P0N				
Peak Output Power	4 kW nominal	6 kW nominal			
Pulse Length &	0.08 US, approx 2100 Hz (Short Ranges:0.25 nm -1.5 n				
Pulse Repetition	0.3 US, approx 1200 Hz(Middle Ranges: 1.5nm -				
Rate	0.8 US, approx 600 Hz(Long Ranges: 3 nm and above)				
Modulator	FET Switch				
Duplexer	Circulator with diode limite	er			
Receiver Front End	MIC(Microwave IC)				
Tuning	Automatic or Manual				
Intermediate Frequency	60 MHz				
Bandwidth	25 MHz(0.08 us, 0.3 us), 3 MHz (0.8us)				

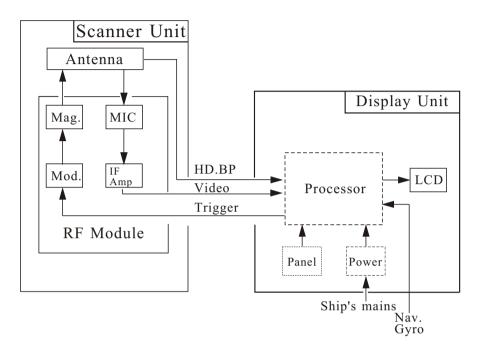
DISPLAY UNIT

		KR- 1338		KR-1668													
Picture Tube			10.4	′ LCI	D(LEI) bac	klight	,32	bit	TF	Τc	olo	r L	CI))		
Range Scale(n	m)		KR-1338:36 nm KR-1668:64 nm														
		0.125	0.25	0.5	0.75	1	1.5 2	3	4	6	8	12	16	24	36	48	64
Range Ringe In	nterval	1/16	0.125	0.125	0.25	0.25	0.5 0.5	5 1	1	2	2	3	4	6	12	12	16
Number of Rin	igs	2	2	4	3	4	3 4	3	4	3	4	4	4	4	3	4	4
Bearing Resol	ution			4°							1.	.9°					
Range Discrim	nination					Be	etter th	an 2	20 r	n							
Bearing Accur	racy						<u>+</u>	1°									
Minimum Ran	ge					Be	etter th	an 2	25 r	n							
Range Ring Ac VRM Accurac		- 0.9° or 8m, whichever is the greater															
Input/Output 7	Ferminal	NMEA (three input): NMEA 0183NMEA (output):NMEA 0183(\$RATLL, \$RARSD, \$RATLL: Internal easy ARPA version.)External Buzzer (output) : +12 V source pulse Open Collector Slave Display (output): TRU-HD, BP, TRU-TRIG, VIDEO															
Nav Data		NMEA 0183 Format (: any talker) \$••APB, \$••BWC, \$••BWR, \$••DPT, \$••GGA, \$••GLL, \$••GLC, \$••GTD, \$••HDG, \$••HDM, \$••HDT, \$••MDA, \$••MTW \$••RMA, \$••RMB, \$••RMC, \$••VTG, \$••VHW, \$••XTE,			ГW,												
Compass safe	Standard	0.75 m															
Distance Steering		0.6 m															

ENVIRONMENTAL CONDITIONS

		KR-1338	KR-1668		
Ambient	Scanner Unit	-25°C to +70°C			
Temperature	Display Unit	-15°C to +55°C			
Humidity		Relative humidity $93\% \pm 2$	% or less at +40 °C \pm 3 °C		
Vibration		-IEC 60945			

KR-1338-SMJ-6


POWER SUPPLY & POWER CONSUMPTION

	KR-1338 KR-1668		
DC Power	10.5 V to	9 40.0V	
	48 W approx	56 W approx	

2. BLOCK DESCRIPTION

2.1 Overview

The simplfied block diagram of the system is illustrated below.

<u>TX</u>

The trigger pulse from the PROCESSOR Board is delivered to the MODULATOR Board, oscillates the magnetron, and then radar wave is emitted from the radiator.

<u>RX</u>

The 9.4 Ghz echo signal received by the antenna is converted to 60 Mhz signal by the MIC, amplified by IF Amp, and fed to the PROCESSOR Board as video signal. It is digitally processed and then displayed on the LCD.

2.2 Display Unit

Power Supply Circuit (PWR 0913)

The constant voltage generator Q1 is in operation even when power switch is off, ship's mains is supplied. The power supply circuit is basically consists of a main inverter and a sub inverter. The main inverter derives the isolated line voltages +12 V/ANT+12 V and -12 V/ANT -12 V from the main input. The sub inverter derives +5 V and +32 V from +12 V output of the main inverter.

<u>Main inverter</u>

The PWR switch becomes "open" when it is set to on position.

When the PWR switch is pressed, about 9 V is input via PWR line (P1302 #13), Q2 is on, and DC+10 V is applied to the PWM.

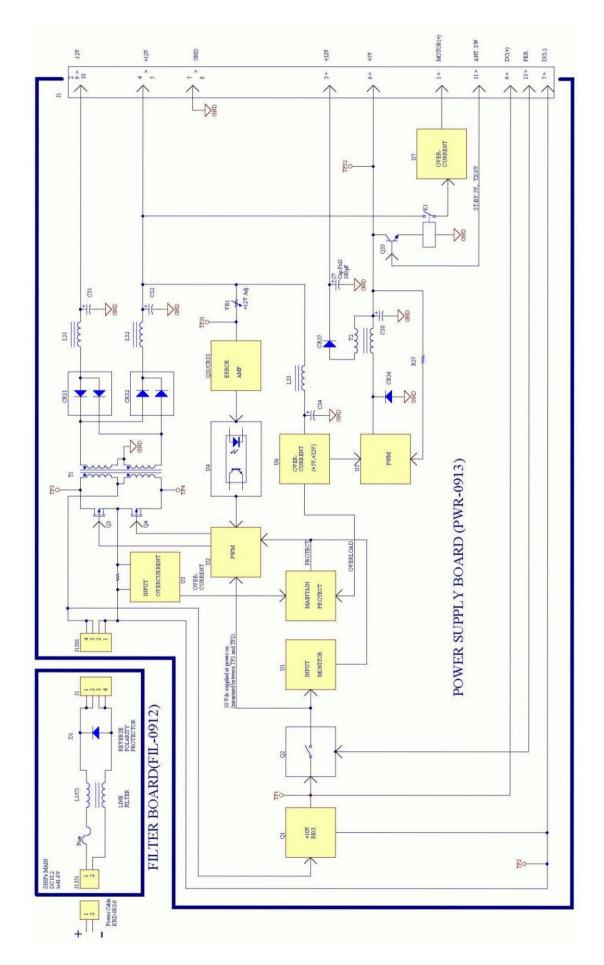
When power is supplied to the PWM controller, it starts operation and alternately turns on and off two switching FETs Q3/Q4 connected to the primary widing of T1. The resultant AC voltage obtained on the secondary windings are rectified and smoothed to +12 V and -12 V, and delivered to various circuits in the equipment. The voltage taken from the +12V line is fed back to the PWM controller through the Vr1 to maintain the +12 V output constant.

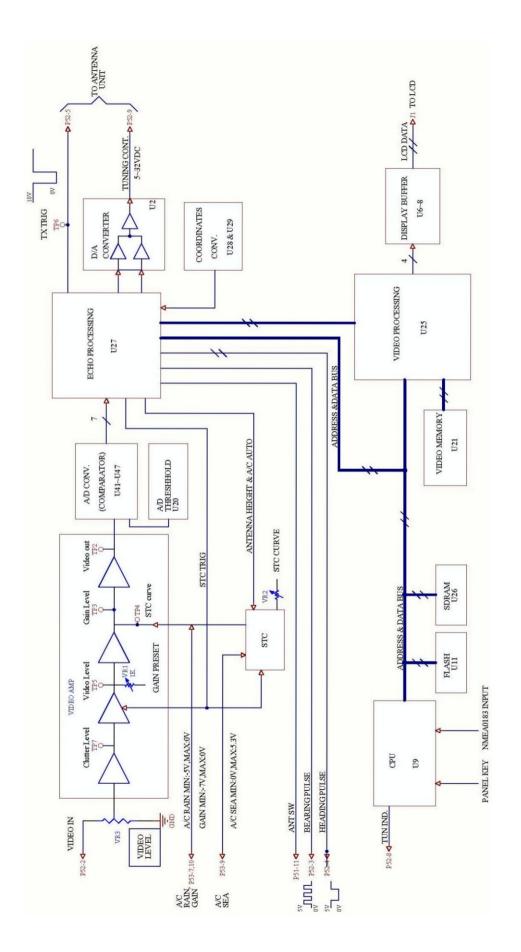
<u>Sub inverter</u>

U5 and the associated circuit form a PWM switching regulator for +5V and +32V. The voltage taken from +5 V line is fed back to U5 through R37 resistance to maintain the +5 V output constant.

Protectors

Protection of power supply circuit is achieved by stopping the drive signals to the switching FETs Q3/4.


Qverload on +5 V and + 32 V line is detected by U6. Overload on +12 V(MOTOR+) line is detected by U7. When the +5 V and + 32 V line is reduced by a heavy load, U6 or U7 becomes condctive and consequently disables the PWM controller through Q6, Q7 and Q8. Overcurrent on the main input line is detected by R13, R14 and R15. The voltage drop across Q6, Q7 and Q8 bec- omes large when the inverter is overload. Overcurrent detector U3 disables PWM inverter U2 when the voltage drop exceeds a certain level.


Overvoltage of mains input is detected by the U1. When the input voltage exceeds 41.6 V, the U1 becomes active and disables PWM controller U2

Scanner motor power (ANT+12V/ -12 V)

+12 V and -12 V (ANT +12 V/ANT -12 V) are used to drive 24 V scanner motor. The power to the motor is turned on/off by the relay(K1) on the POWER SUPPLY Board. The relay control signal from the SPU Board is supplied to Q52 and Q53 on the POWER SUPPLY Board. Pressing the TX key changes the ANT SW signal state from 5 V to 0 V, and K1 is on to supply +12V.

BLOCK DIAGRAM OF POWER SUPPLY

AUTOMATIC TUNING

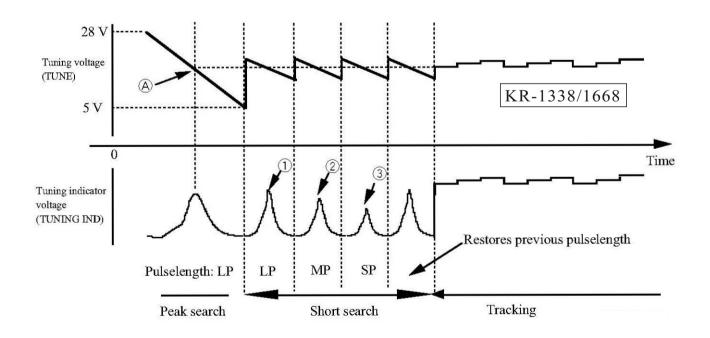
There are two types of automatic tuning: peak search and short search. The tuning voltage differs from model to model.

KR-1338/1668 : 5 V to 28 V

Peak search: Tuning voltage (TUNING), point in the figure below, is searched in the tuning voltage range 5V to 28V. Tuning Indicator voltage (TUNING IND) is maximum at point .

Search conditions: After initial tuning adjustment. Search time: 3 sec approx

Short search: Maximum tuning indicator voltage \bigotimes is searched in the tuning voltage range of ± 2.5 V.


1)Aft initial tuning adjustment.

2) When tuning method is switched from manual to automatic.

3) When the radar is switched from ST-BY to TX.

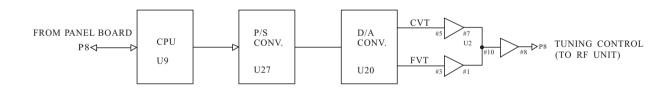
4) When a range where pulselength is changed from short to middle and from middle to long is selected.

Tracking: After short search, tracking takes place. Tracking voltage: 0 V to 32 V

TUNING INDICATOR

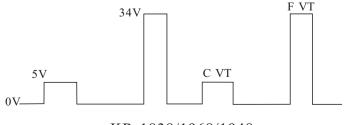
After tuning adjustment, peak TUNING IND voltages, (1), (2) and (3) in the figure on page 2-5 are stored on to EEPROM.

The automatic and manual tuning point B is also memorized. Using these data, the tuning indicator extends more than 80% on ALL TX pulses.


Note that the extension on short pulse is shorter than on long pulse. The indication becomes shorter with the magnetron deteriorated.

MANUAL TUNING

The manual tuning voltage changes from 5 to 32 V on M 1668 at the steps of about 0.1 V.


Manual Tuning is carried out by using omnipad: pressing "Right" side increases.

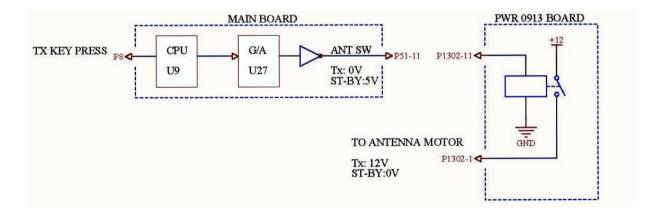
The TUNING continue voltage displayed on the screen differs by about $\pm 1V$ from the measured voltage at P52 # 9. Manual Tuning and tuning adjustment are required when automatic tuning is abnormal (that is ,low sensitivity).

TUNING CONT. Operation (from power-on stand-by)

A square wave is automatically output as a TUNING CONT signal during standby just after power-on the model as follows.

KR-1838/1968/1948

Heading and NAV data


Heading data in NMEA format HEADING DATA (HDT, HDG, HDM, VHW) and NAV data (NMEA-0183) can be input from any NMEA input connection. THE data from the KEY board(KEY 0912) to P8#3 of MAIN board .

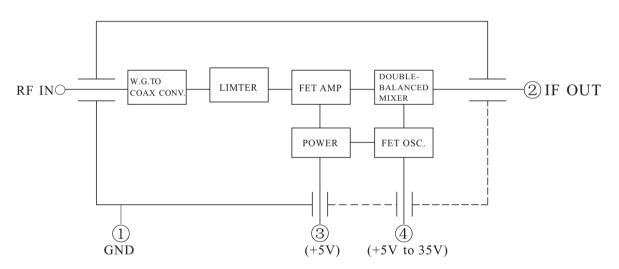
NOTE:

1.If only one NMEA signal input may select any connection, if several connections have time the signal input, be please main and the most commonly used signal meets in the connection 1, because the complete signal's input is 1 comes the synchronization by the connection, i.e. the connection 1 signal is fastest;2.The NMEA signal after or before radar starting in may, but in signaling process, if the NMEA port 1 loss of signal, will possibly cause other port data not to be able to transmit normally. Must remove this kind of condition only to be able again starting.

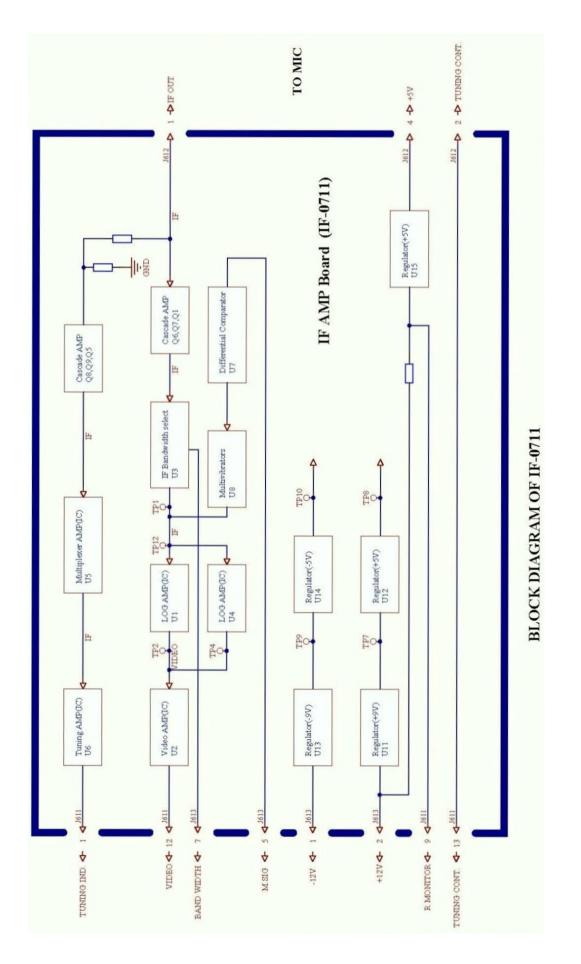
Turning on/off antenna rotation

The SPU board controls antenna rotation. In normal operation, the antenna rotates during the TX condition. However, the antenna can be stopped during the TX condition thru the Installation setup menu.

2.3 Transceiver Unit


MIC

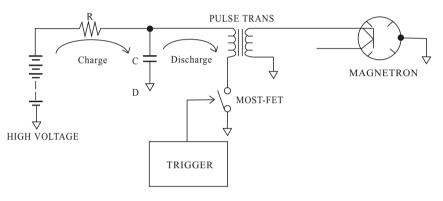
The following description is for reference only.


As a general rule of thumb, the radar requires better noise figure (NF) and better dynamic range. Both factors, however, are reciprocal. The NF affects long range performance, while the dynamic range dose short range performance.

To improve noise figure, amplifier and MBS circuit into the MIC, RU-9360.

MIC w/RF amplifier·····NJT-1968B(MODEL 1338/1668)

Block Diagram of MIC NJT-1968B (MODEL 1338/1668)



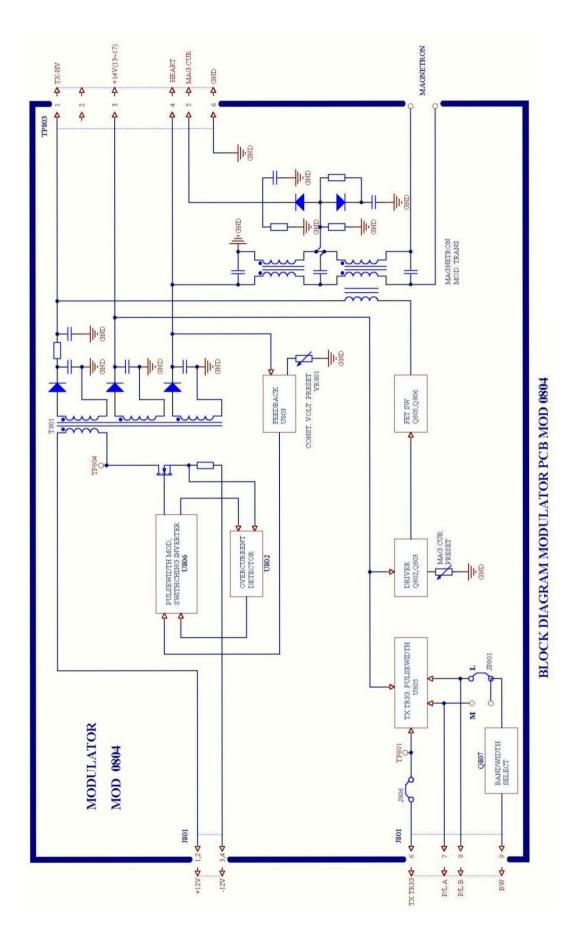
Modulator

PRINCIPLE OF FET SWITCHING MODULATOR

High voltage is charged into C through R while the magnetron is inactive. When the trigger is applied to the power MOS-FET, the FET turns on and the high voltage appears at the primary winding of the pulse transformer. This transformer boots the voltage, which makes the magnetron oscillate.

One advantage of this method is that the magnetron oscillates only when the FET is conducive, that is the transmission pulsewidth can be changed by the TX trigger pulsewidth. Therefore, parts such as relay and coil can be eliminated.

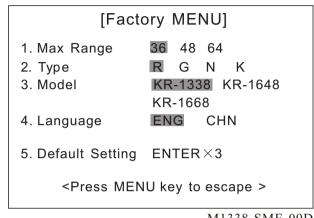
Modulator section simple block diagram


MODULATOR BOARD MOD-0904

The main function of the modulator section is to produce high voltage pulses to drive the magnetron. To produce these pulse, the MODULATOR Board has a modulator trigger circuit, modulator pulse generator and booster pulse transformer.

The modulator trigger circuit consists of U805 and associated components. This circuit generates the pulses which cause modulation FETs Q805,Q806 to conduct. The pulses are produced when the TX TRIG pulses from the display unit is received and U805 conducts. The voltage of the pulses is raised at pulse transformer T802 until it is 3.5 kV. This circuit adjusts the electrical curent flowing into the magnetron so it is 3 A.

The MODULATOR Board also contains the TX high voltage circuit and the magnetron heater circuit. The TX high voltage circuit charges capacitors with 300 V high voltage produced at the primary windings of T801 and discharges them once the TX TRIG pulse is received. The magnetron heater circuit produces stable +7.5V.


BLOCK DIAGRAM OF MODULATOR PCB MOD 0904

2.4 Different Points of Similar PCBs 1. How to set SPU (MAIN 0910) Board

This board is set at factory for use in the KR-1338. For use in the or 1668, change the factory menu as below.

While pressing and holding down the GAIN(HM-OFF) control, press the [MENU] key five times to display the factory menu.

M1338-SME-09D

1) MAX range

 36 nm: KR-1338,
 48 nm: KR-1648,
 64nm: KR-1668

 2) Type
 R: Regular,
 G: German,
 N:Netherland,
 K:Korea

 3)Model
 Selects the Antenna Unit.
 KR-1338
 KR-1648
 KR-1668

 4)Language
 KR-1338
 KR-1648
 KR-1668

CHN: Chinese ENG: English

5)Default Setting

Default settings (except factory menu) can be restored by selecting Default Setting and pressing the [ENTER] key three times. Restart radar settings. After changing the setting, the installation adjustment (heading, timing, etc.) Must be carried out again.

2.MODULATOR board MOD-0904 A/B

E version of MOD-0904 is not compatible with A version. This is because B has a larger pulse transformer.

3. ADJUSTMENT

WARNING

IMPORTANT! SAFETY INFORMATION

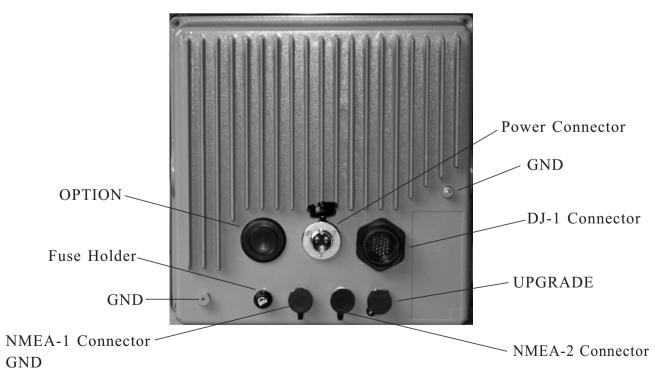
Be sure to read all the safety information which follows before perfoming any adjustment.

Hazardous Voltage

This equipment uses high voltage electricity which can SHOCK, BURN or cause DEATH Always make sure the electrical power is turned off before attempting to change a component or inspecting the inside of the equipment. A residual charge may exist in capacitors, even with the equipment turned off. Always short all supply lines to the chassis with an insulated screwdriver or a similar tool before touching the circuit.

Working on the Scanner Unit Mast

Work on the scanner unit mast in dangerous, and doubly so if the proper precautions are not taken.


1. Post an appropriate warning sign near the display unit to indicate that work on the scanner unit is being performed, to prevent accidental application of the power to the scanner unit.

2. Wear a safety helmet and always be aware of where the scanner radiator is.

3.1 Adjustment of Display Unit

Display Unit, Front side of view

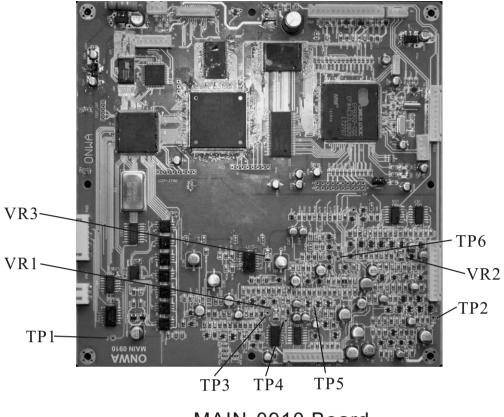
Display Unit, Rear side of view

Inside of Display Unit, LCD

Inside of Display Unit, Processor PCB

Inside of Display Unit, Power PCB

Line Voltage

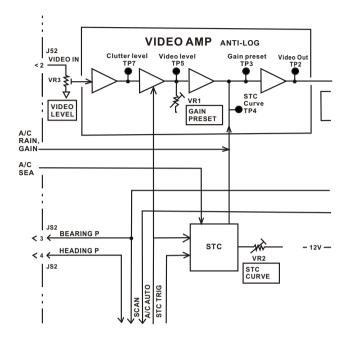

Item	Ratings	Test Point	Remarks
+12 V	12.1 to 12.3 V	DJ1-10(+)-DJ1-20(-)	ST-BY
+5 V	4.9 to 5.1V	DJ1-23(+)-DJ1-20(-)	
+12 V	-11.6 to -12.8 V	DJ1-14(+)-DJ1-20(-)	
ANT 12 V	12.0 to 12.3 V	DJ1-1(+)-DJ1-20(-)	

KR-1338-SME-8

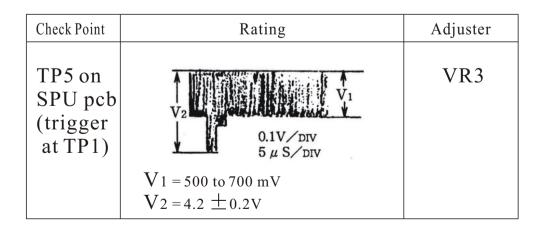
Output signals from DJ-1 connector

Test Item	Ratings	Test Point	Remarks
TUNE	Approx. 5 V to 28 V(KR-1338/1948/ 1968)	DJ1-6(+) -DJ1-20(-)	Antenna Unit discon- ected TX, Auto tuning
P/L A	Short pulse: 0 to 1.0V(L) Medium pulse:7 to 12 V(H) Long pulse: 7 to 12 V(H)	DJ1-8(+) -DJ1-20(-)	
P/L B	Short pulse: 0 to 1.0V(L) Medium pulse:0 to 1.0 V(L) Long pulse: 8 to 12 V(H)	DJ1-7(+) -DJ1-20(-)	Antenna Unit discon- ected Tx condition
TRIGGER	Short pulse: 2000 to 2300 Hz Pulsewidth: 10 to 20 Us (All range) Polarity: Positive Polarity 8 to 12 V(H)	DJ1-2(+) -DJ1-20(-)	

Location of parts on MAIN 0910

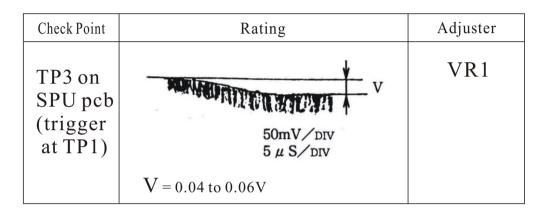

MAIN 0910 Board

Test Point on MAIN 0910


Test Point	Test Item	Ratings	Remarks
TP1	TRIGGER	3.3 Vpp	
TP2	VIDEO	-4 Vpp	TX Condition
TP3	Gain level preset	后详	
TP4	STC Curve	4uS: 1.0V to 1.2V 20US: 2.0V to 2.3V 40US: 2.6V to 2.8V 60US: 3.0V to 3.2V 90US: 4.0V to 4.5V	TX Condition GAIN VR: MAX STC VR: MAX
TP5	VIDEO Preset	-4 Vpp (Neg. Polarity, main bang level)	TX Condition
TP6	TX TRIGGER	8 to 12V	

VIDEO Signal adjustment

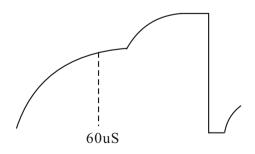
VIDEO signal adjustment is carried out in the processor board. This is a simplified block diagram of the video amplified circuit.



Video level	Conditions
	A/C AUTO OFF
	A/C SEA fully counterclockwise
	A/C RAIN fully counterclockwise
	TX on 12 nm
	<u>Table 3-5 video level</u>

Gain preset

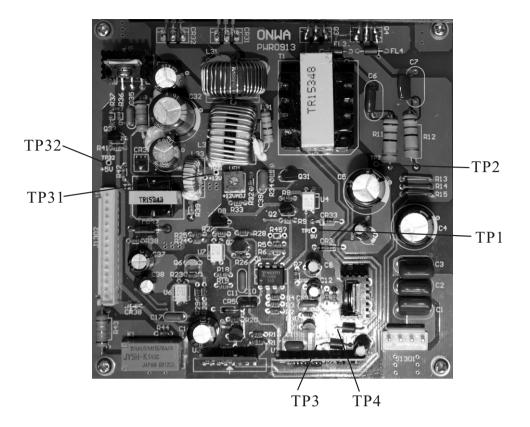
<u>Conditions</u> A/C AUTO······ OFF A/C SEA····· fully clockwise A/C RAIN····· fully counterclockwise GAIN····· fully Clockwise Scanner ··· OFF [INSTALLATION SETUP 1] menu "4. Ant on Tx" : "STOP" <u>Table 3-6 Gain preset</u>



STC curve

Conditions

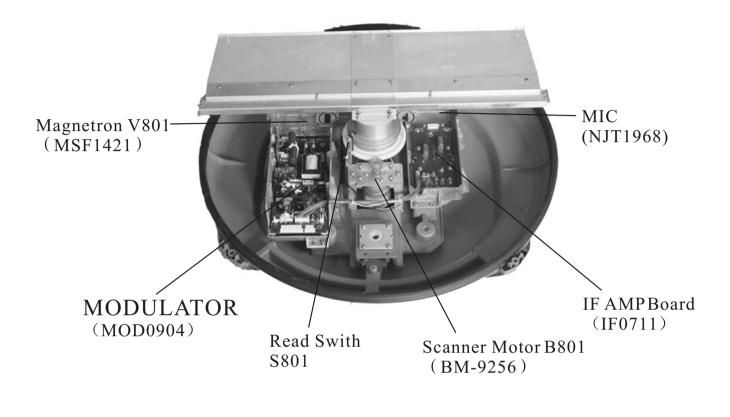
A/C SEA····· fully clockwise GAIN····· fully Clockwise TX on 12nm Table 3-7 STC curse


Check Point	Rating at 60 uS point	"Ant Height" on Installaion Setup menu	Adjuster
	$3.1 \pm 0.1 V$	"MED"	
TP4	$3.6 \pm 0.2 V$	"LOW"	VR2
	$2.5 \pm 0.2 V$	"HIGH"	

ANT height setting

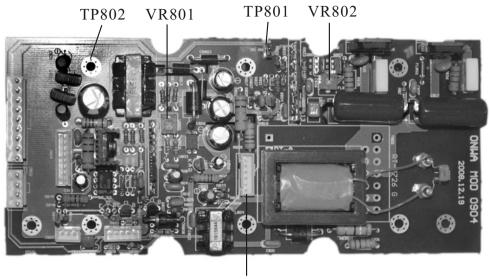
Antenna height (STC curve adjustment) should be set Radar at installation to match the STC curve with installation conditions. This is especially important when sea conditions changes over time - rotation of the STC VR may erase both sea clutter and legitimate targets if the STC curve is not suitable. Setting in the field 1. Set antenna height on the Installation Setup 1 menu If both sea clutter and echoes disappear, decrease antenna height setting. If sea clutter cannot be completely eliminated, increase antenna height setting. 2. Adjust Vr2 on the SPU board. If both sea clutter and targets disappear: increase voltage at 60 us point. Note: The following step, adjustment of the STC, should only be followed when step 1 and 2 do not produce satisfactory results. Record the factory setting before adjusting the STC. 3. Adjust STC. (Press the MENU key five times while pressing and holding down the HM OFF control to display the FACTORY menu. Operate the trackball to change the maximum effective range of the STC.

Location of parts on PWR-0913



Test point on PWR-0913

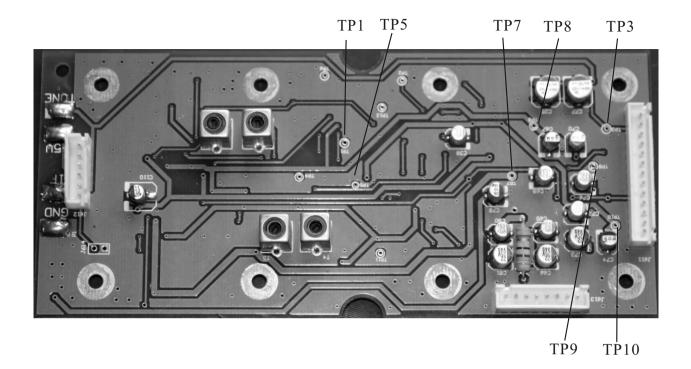
Test Point	Test Point	Test Point	VR No	Remarks
TP1	+10 V	8.2 to 9.5 V	—	_
TP2	DC(-)	_	_	—
TP3	Inverter Frequency	85.5 to 94.5 KHz	_	_
TP4				
TP 31	+12 V	12.1 to 12.3 V	VR 1	_
TP 32	+5 V	4.9 to 5.2 V	_	—
J1 #2(-) J1 #7(GND)	+12 V	-11.6 to -12.8 V	_	_
J1 #3(+) J1 #7(GND)	+32 V	30.0 to 35.0 V	_	_


3.2 Adjustment of Scanner Unit

Location of PCBs in Scanner Unit (KR-1338)

Inside of Scanner Unit

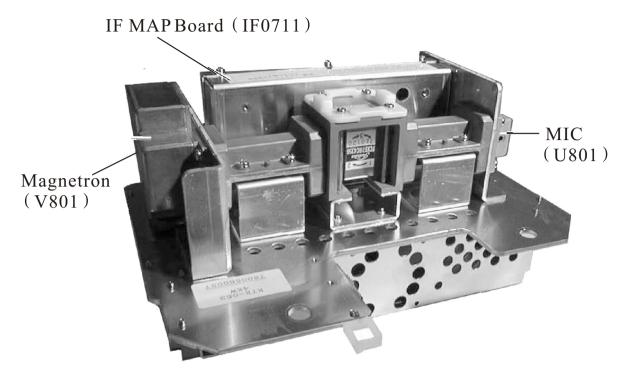
Location of parts on MOD-0904A



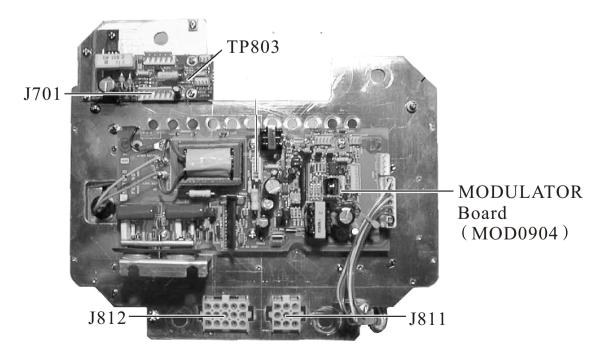
TP803

Test point on MOD-0904 A

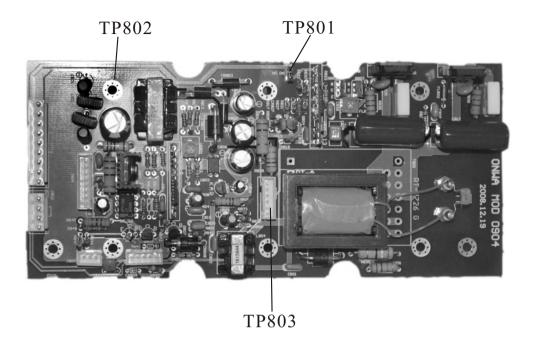
Test Point		Test Item	Ratings	VR No	
TP 801		TRIGGER	Same as MAIN 0910 TP6 in Display Unit	_	TX Condition
TP 802		GND	_	—	_
	#1	TX-HV	ST-BY: 300 to 370 Vdc TX: 290 to 330 Vdc(Long)	_	_
TP803	#2	GND	_	_	_
11 005	#3	+14V	13 to 17 Vdc	_	ST-BY
	#4	Mag. Heater	7.4 to 7.6 Vdc	VR801	ST-BY
	#5	Mag. Current	0.25 to 1.2 Vdc(Short) 0.7 to 1.2 Vdc(Medium) 0.9 to 1.1 Vdc(Long)	VR802	TX (Long) Condition
	#6	GND		_	_


Location of parts on IF-0711

Test point on IF-0711


Test Point	Test Item	Ratings	VR No	Remarks
TP 1	Center Frequency correction	For factory adjustment	T1, T2	
TP 3	VIDEO output	Same as MAIN 0910 TP5 in Display Unit	_	—
TP 5	Tuning indicator	For factory adjustment	T3, T4	_
TP 7	+9 V	8.7 to 9.3 Vdc	—	_
TP 8	+5 V	4.7 to 5.3 Vdc	_	_
TP 9	-9 V	-8.7 to -9.3 Vdc		
TP 10	-5 V	-4.7 to -5.3 Vdc	_	_

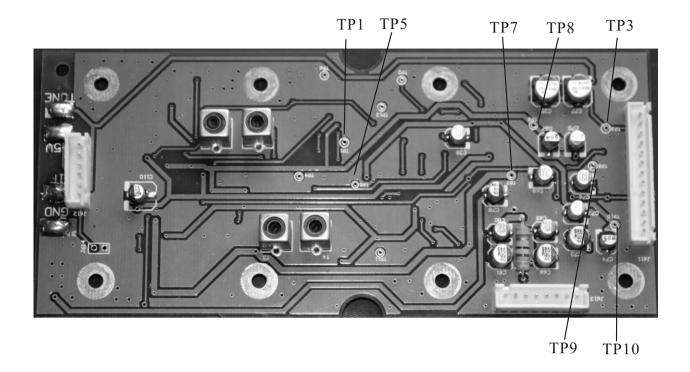
Location of PCBs in Transceiver Module (KR-1668)


Transceiver Module

BEARING SIG GEN Board (HBP0904)

Transceiver Module, Cover removed

Location of Parts on MOD 0904B



Test point on MOD 0904B

Test Point		Test Item	Ratings	VR No	
TP 801		TRIGGER	Same as MAIN 0910 Tp6 in Display Unit	_	TX Condition
TP 802		GND	350 - 390	_	_
TP803	#1	TX-HV	ST-BY: 300 to 370 Vdc TX: 300 to 340 Vdc(Long)	_	_
	#2	GND	_	_	_
	#3	+14V	13 to 17 Vdc	—	ST-BY
	#4	Mag. Heater	7.5 to 7.7 Vdc	VR801	ST-BY
	#5	Mag. Current	0.5 to 1.45 Vdc(Short) 0.95 to1 .46 Vdc(Medium) 1.15 to 1.35 Vdc(Long)	VR802	TX (Long) Condition
	#6	GND	_	_	_

KR-1338-SMC-14

Location of parts on IF-0711

Test point on IF-0711

Test Point	Test Item	Ratings	VR No	Remarks
TP 1	Center Frequency correction	For factory adjustment	T1, T2	_
TP 3	VIDEO output	Same as MAIN 0910 TP5 in Display Unit	_	_
TP 5	Tuning indicator	For factory adjustment	T3, T4	_
TP 7	+9 V	8.7 to 9.3 Vdc	—	_
TP 8	+5 V	4.7 to 5.3 Vdc	_	_
TP 9	-9 V	-8.7 to -9.3 Vdc		_
TP 10	-5 V	-4.7 to -5.3 Vdc	_	_

KR-1338-SMC-15

4. MAINTENANCE

4.1 Remarks on Replacement of Major Parts

Turn off the power before replacing any parts

Do not touch the magnetron while the radar is transmitting. Sufficient high voltage exsts at the magnetron to cause death.

MAGENTRON

The magnetron emits a strong magnetic field. For this reason, remove wrist watch before performing the replacement and use a non-magnetic screwdriver to dismount the magnetron. The estimated life of the magnetron is 2000 hours, (including time in stand-by), however actual life depends on usage.

- 1. Turn off the power.
- 2. Dismount the transceiver module.
- 3. Dismount and replace the magnetron.

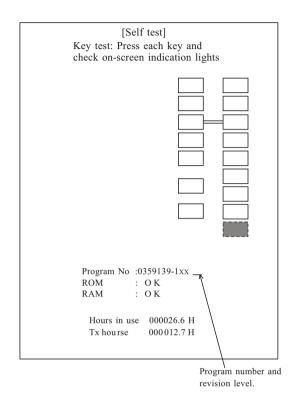
4. When a new magnetron is fitted, allow at least 30 minute pre-heating under ST-BY. Turn on the power and measure magnetron current . See Chapter 3 for heater voltage rating and potentiometer to adjust.

5. Transmit on long range and measure magnetron current. See Chapter 3 for magnetron current rating and potentiometer to adjust.

6. Reset "TX Hours" and "On Hours" on INSTALLATION SETUP menu. See page 4-3 for how to access this menu.

<u>MIC</u>

The MIC can be replaced individually. No adjustment is necessary after replacement.


SPU Board

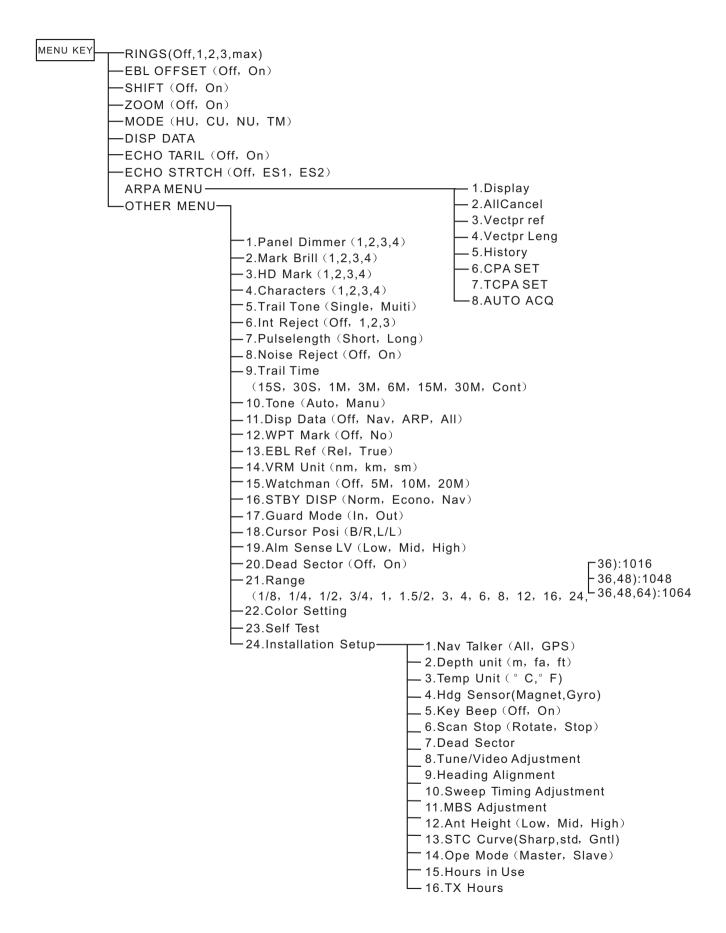
Write down settings of MAIN and INSTALLATION menus before replacing the board. Then, after replacing the board, reenter settings. (Reason: Settings are stored in the E PROM(U48) on the SPU board.)

IMPORTANT: After replacing the board, the factory menu setting must be carried out properly, otherwise the MIC will be damaged.

<u>ROM</u>

The SPU board uses Flush ROM(U36) to store a system program. The program version number can be checked at "23. Self Check" on the MAIN menu.

4.2 Life Expectancy of Expendable Parts


Parts	Туре	Code No.	Life expectancy *1	Remarks	
	BM-9256	000-139-918	more than 3000 hrs.	KR-1338	
Scanner motor			•	KK-1556	
	BM-8256		more than 5000 hrs.	KR-1668	
	MSF1421		more than 2000 hrs.*2	KR-1338	
Magnetron	MAF1421		more than 2000 hrs.*2	KR-1338	
	MAF1422		more than 2000 hrs.*2	KR-1668	
				KK-1008	

KR-1338-SMC-16

*1: Under normal operating condition.

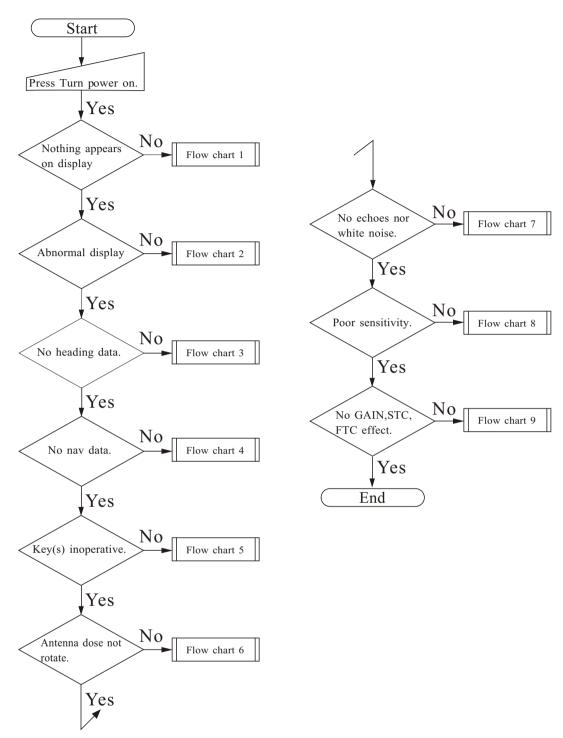
*2: Hours during ST-BY are included.

4.3 Menu tree

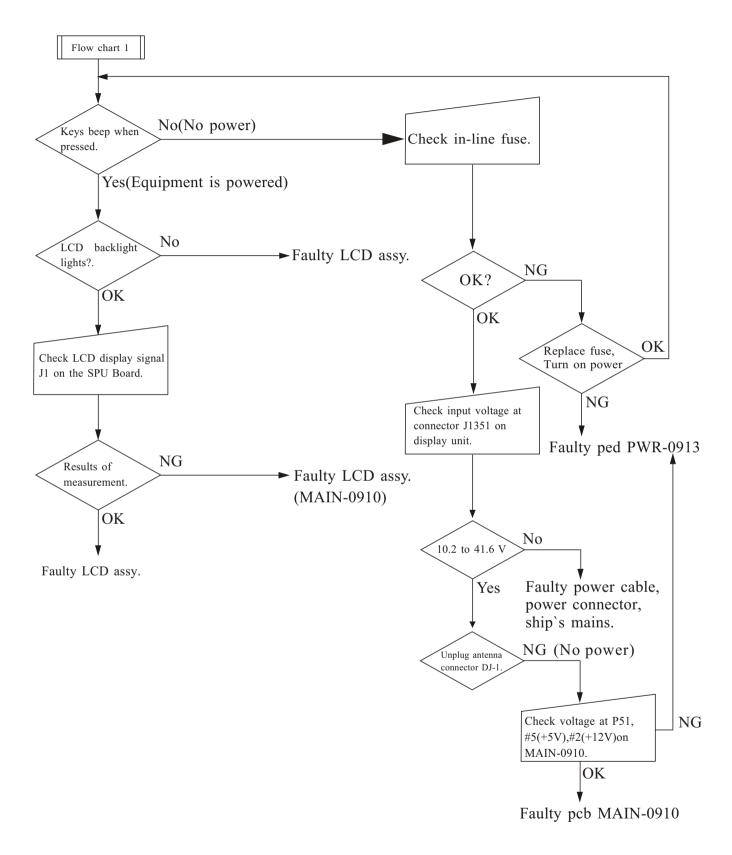
5. TROUBLESHOOTHING

5.1 Outline

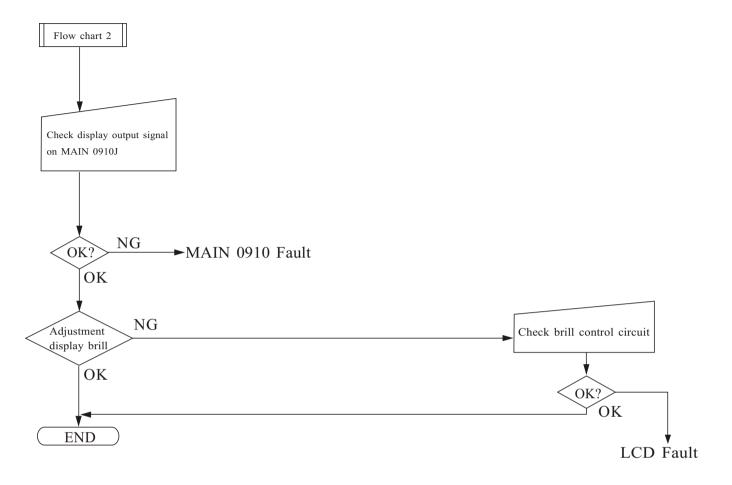
This chapter provides troubleshooting flow charts and describes error messages.

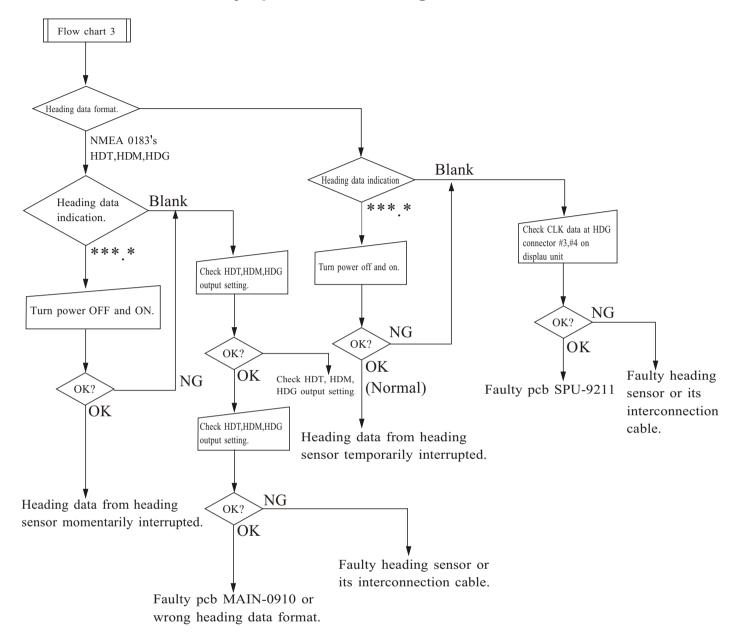

Error messages

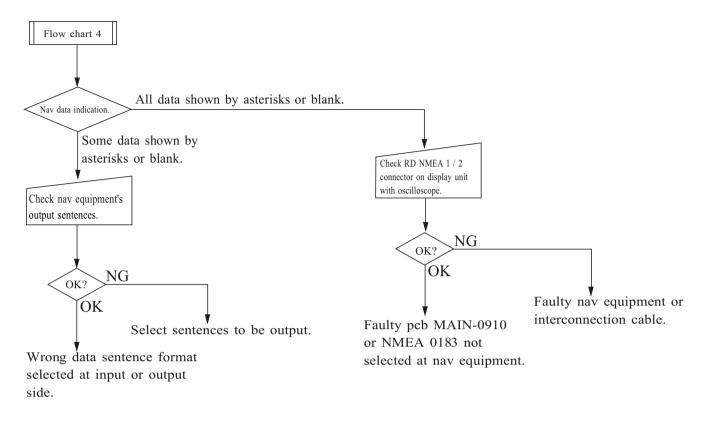
When there is no bearing pulse signal the display unit shows BP-SIG-MISSING and when is no heading signal, HD-SIG-MISSING. Check the antenna cable when those indications appear.

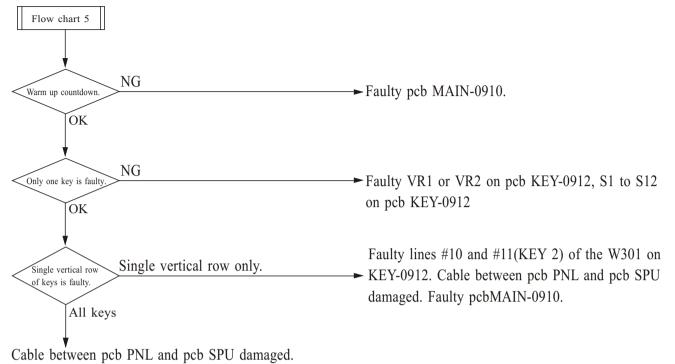

Troubleshooting flow charts

The troubleshooting flow charts help the service technician to diagnose problems. To use the flow charts. First find the symptom and its flow chart number in the flow chart on page 5-2. Then, follow appropriate flow chart to troubleshoot

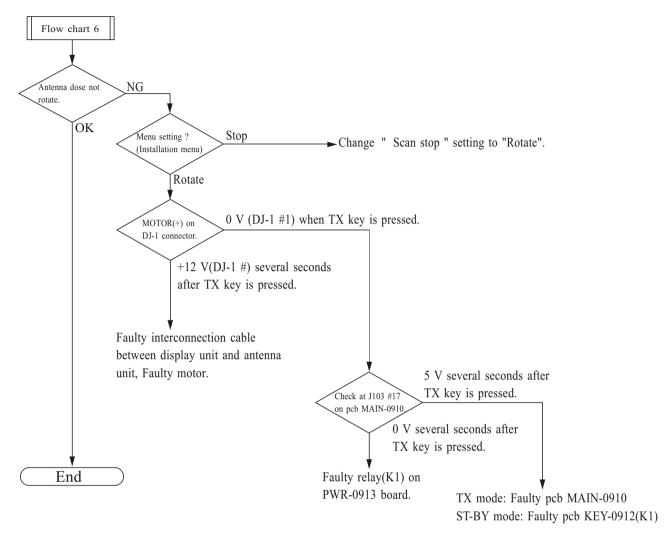

5.2 Troubleshooting Flow Charts

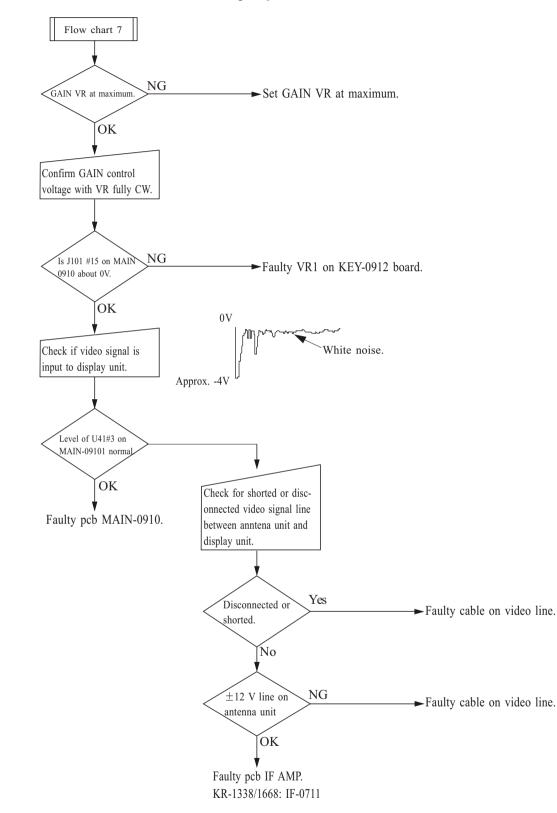

Symptom: Nothing appears on the display.


Symptom: Display Abnormal

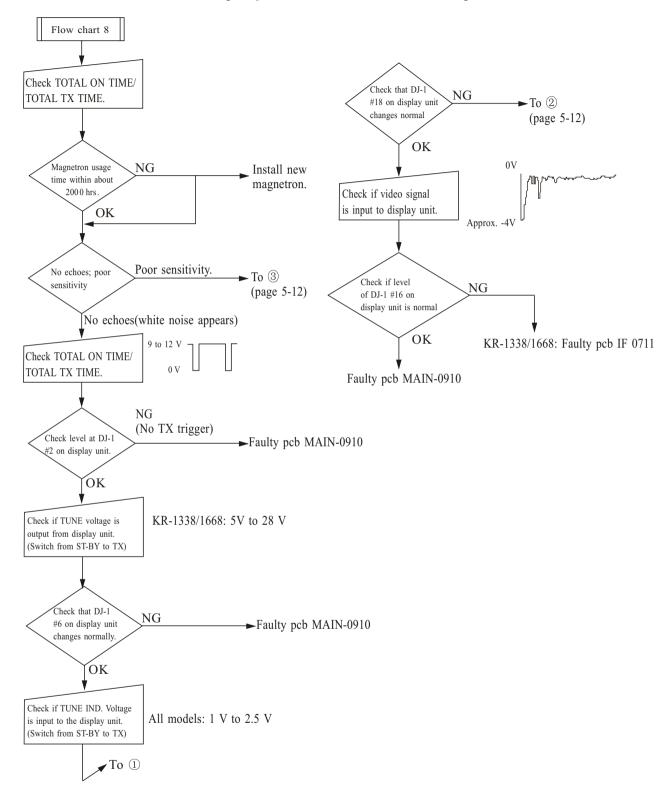

Symptom: No heading data.

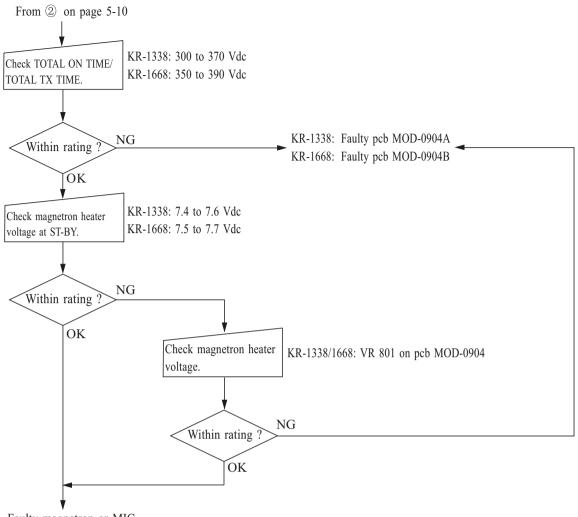
Symptom: No nav data.

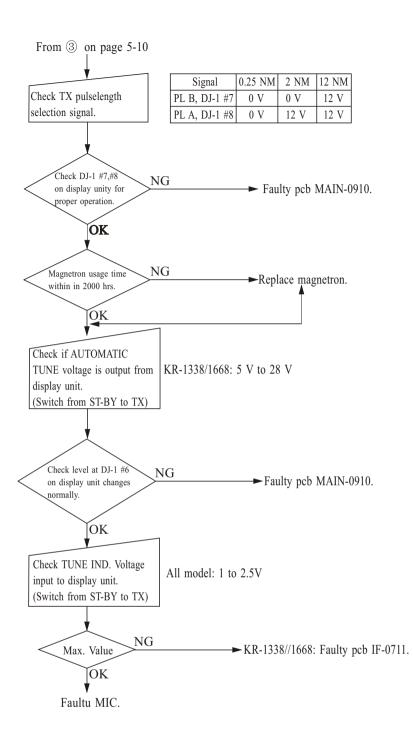


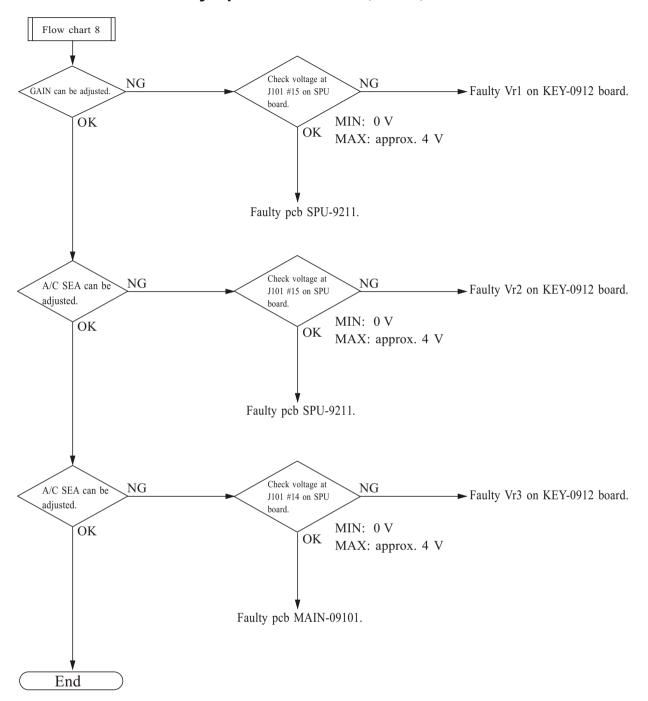

Symptom: key(S) inoperative.

Faulty pcb MAIN-0910


Symptom: Antenna dose not rotate.

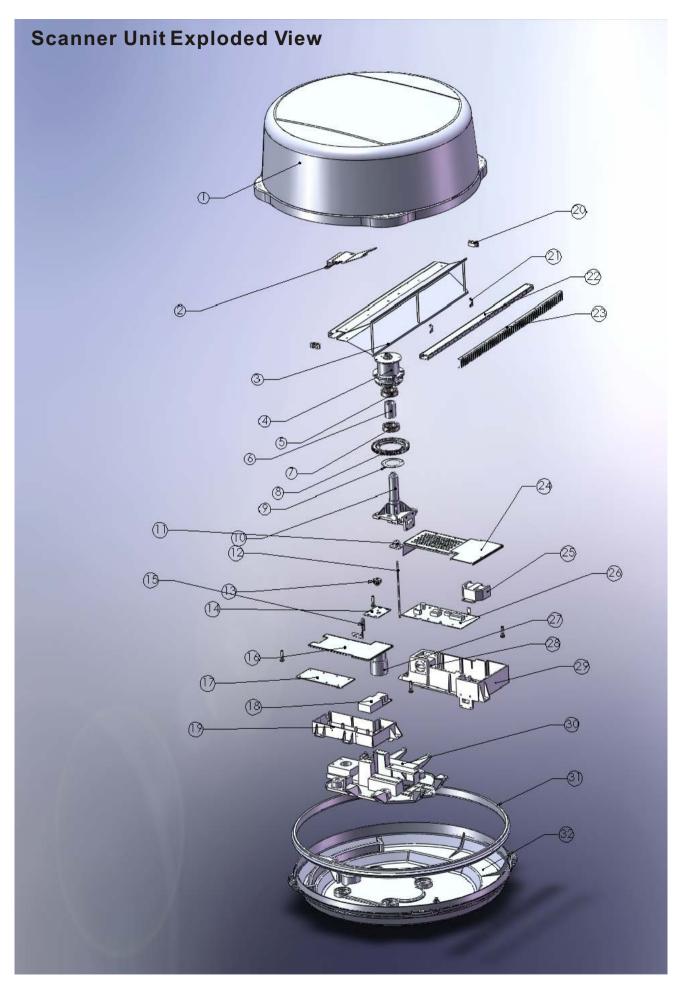



Symptom: No echoes nor white noise.

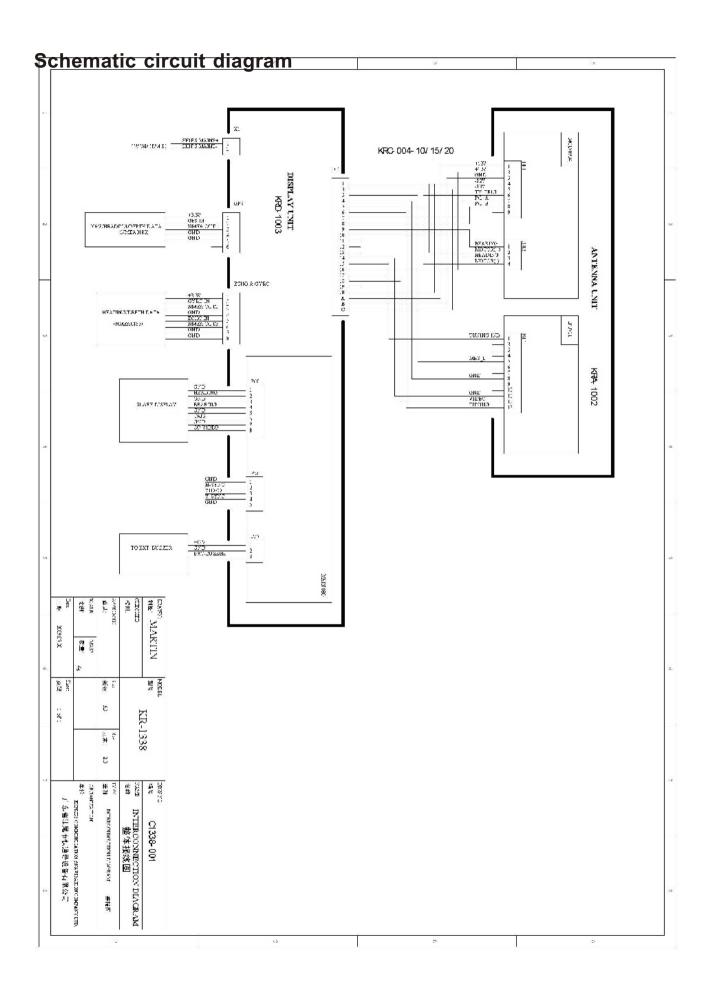

Symptom: Poor sensitivity.

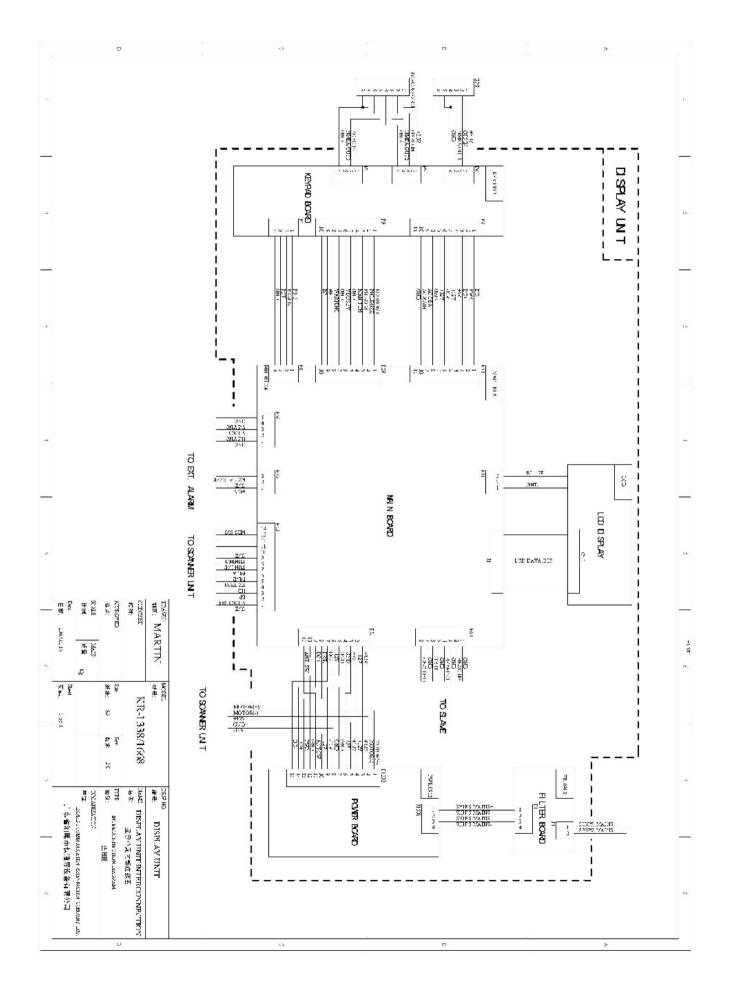
Faulty magnetron or MIC.

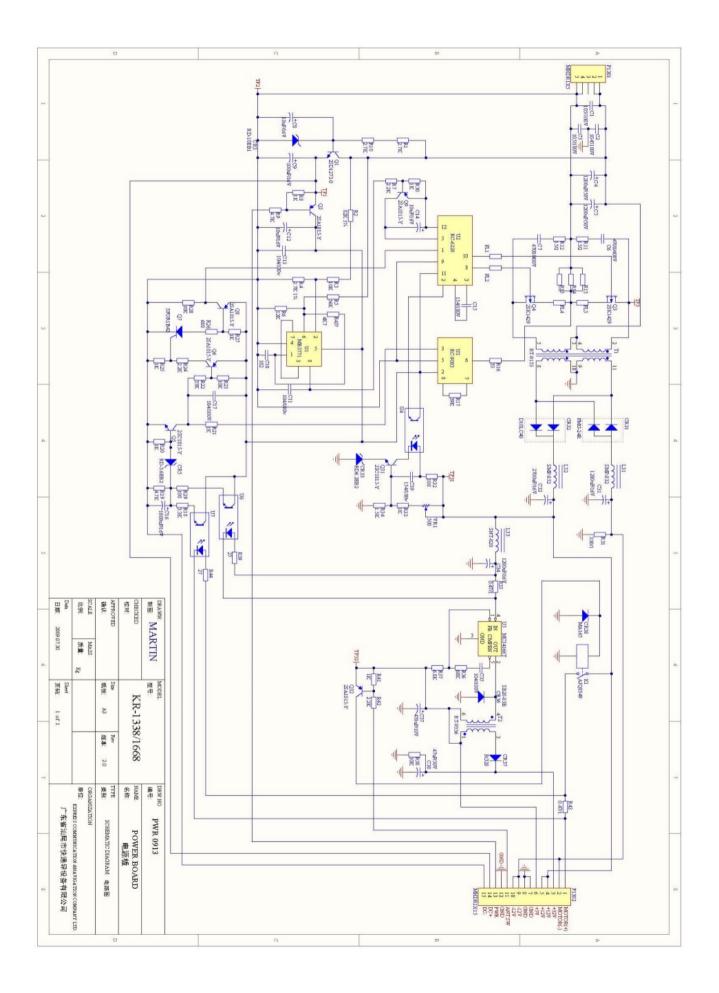
Symptom: No GAIN, STC, FTC effect.

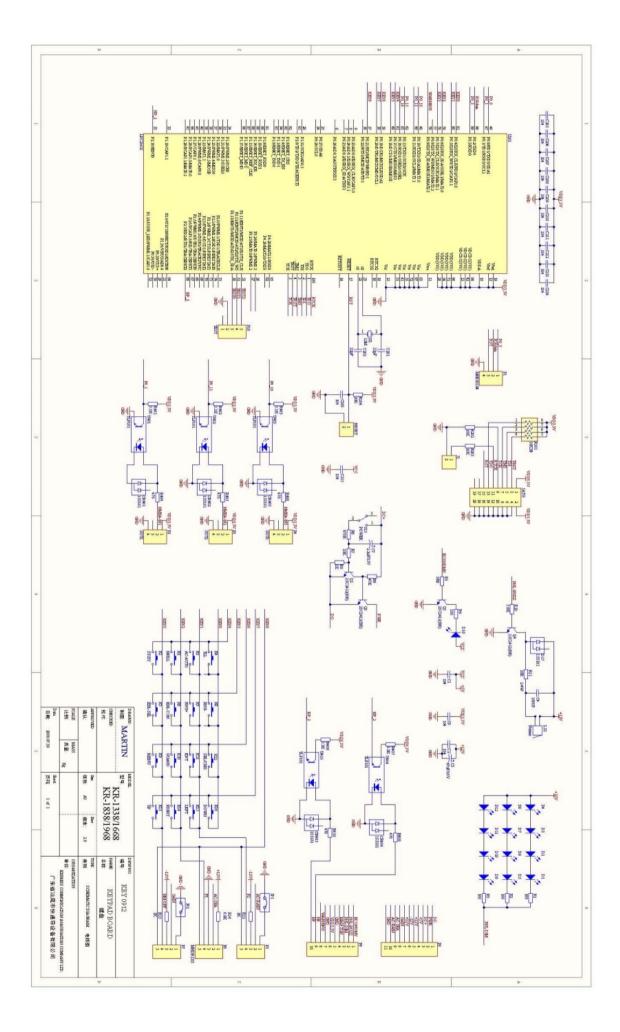

5.3 Message Indications

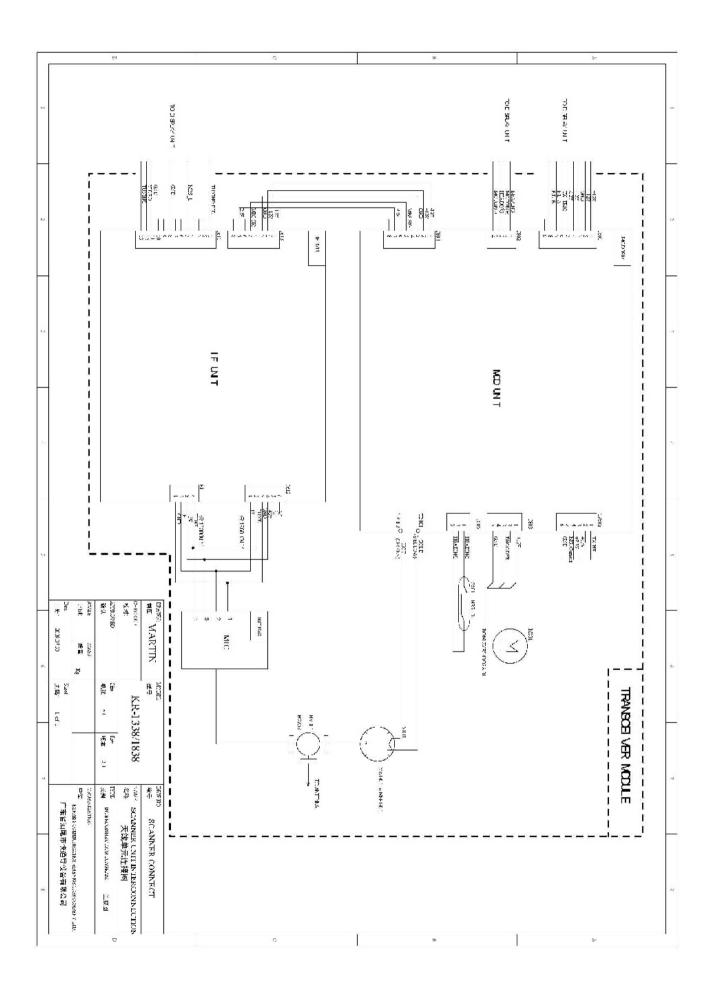
The following messages appear to call the poerator's attention to missing heading, bearing or gyro pulses.


Error Message	Meaning
HD SIG MISSING	Heading pules is not applied to the SPU pcb.
BRG SIG MISSING	Bearing pules is not applied to the SPU pcb.
HDG shows ****.*	****.* Appears when bearing signal is interrupted momently1) Press [MODEL] key to erase asterisk.(Momental signal loss)2) Check the connection.




	ſ		
		MODE: KR-1338	
		KR-1338 Display Unit	
SYMBOL	NAME	CODE NO.	NOTES
1	FRONT PANEL	KR-1338-001	
2	GASKET	KR-1338-003	
3	LCD PROTECTION	KR-1338-004	
(4)	KNOB	KR-1338-009	3
5	RUBBER KEY	KR-1338-006	
6	10.4 ″ LCD	KR-1338-019	
7	RUBBER KEY BASE	KR-1338-005	
8	LCD CHASSIS	KR-1338-010	
9	KEY Board	KR-1338-030	
(10)	PROCESSOR Board	KR-1338-027	
(1)	MAIN CHASSIS	KR-1338-011	
(12)	TR FIXING PLATE	KR-1338-012	
(13)	FILTER Board	KR-1338-029	
(14)	POWER Board	KR-1338-028	
(15)	COVER	KR-1338-002	
16	FUSE HOLDER	KR-1338-052	
(17)	DJ1 CONNECTER	KR-1338-051	
(18)	POWER CONNECTER	KR-1338-047	
(19)	WATERRPROOF CAP		
20	7 Pin Air Outlet	KR-1338-049	
(21)	8 Pin Air Outlet	KR-1338-050	
(22)	6 Pin Air Outlet	KR-1338-048	
23	Bracket	KR-1338-013	4
24	GASKET	KR-1338-008	2
25	KNOB	KR-1338-007	




		MODE KR-1338	
		KR-1338 SCANNER UNIT	
SYMBOL	NAME	CODE NO.	NOTES
1	RADOME UPPER ASSEMBLY	KR-1338-053	
2	HORN RETAINER	KR-1338-069	
3	HORN	KR-1338-064	
(4)	CHOKE	KR-1338-073	
5	6005Z BEARING	KR-1338-090	2
6	BEARING COLLAR	KR-1338-075	
7	6005Z BEARING	KR-1338-090	2
8	IDLE GEAR	KR-1338-083	
9	BEARING RETAINER	KR-1338-074	
10	INNER FEED WAVEGUIDE	KR-1338-072	
(1)	DOOR KNOB	KR-1338-061	
(12)	AXIS	KR-1338-080	
(13)	ACTIVE GEAR	KR-1338-081	
(14)	MOTOR FIXED PLATE	KR-1338-076	
(15)	SW MOUNTING PLATE	KR-1338-079	
16	AMP LID	KR-1338-064	
17	IF AMP PCB	KR-1338-102	
18	MIC	KR-1338-088	
(19)	AMP CASE	KR-1338-059	
20	SHORT END	KR-1338-060	
21)	WG RETAINER	KR-1338-062	2
22	SLOTTED WG	KR-1338-067	
23	LATTICE	KR-1338-071	
24)	RF CHASSIS COVER	KR-1338-063	
25	MAGNTRON	KR-1338-087	
26	MODULATOR	KR-1338-101	
27)	MOTOR	KR-1338-089	
28	CIRCULATOR	KR-1338-086	
29	RF CHASSIS	KR-1338-058	
30	MOUNTING BASE	KR-1338-057	
31)	PACKING FOR RADOME	KR-1338-055	
32	RADOME BASE	KR-1338-054	

